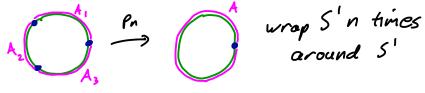
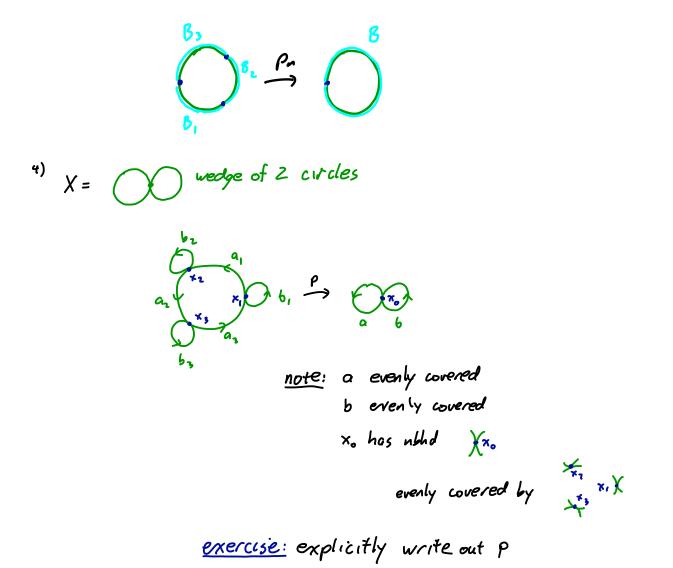
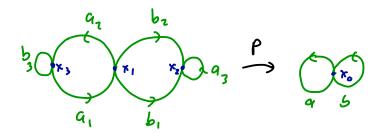
a covering space of a space X is a pair
$$(\tilde{X}, p)$$
 where
 \tilde{X} is a space and
 $p: \tilde{X} \to X$ is a continuous map such that every point $x \in X$
has an evenly covered neighborhood
an open set U is called evenly covered if
 $p^{-1}(U) = disjoint union of open sets $\{U_k\}$ in \tilde{X}
such that $p|_{U_k}: U_k \to U$ is a homeomorphism $\forall a$
examples:
i) a homeomorphism $p: \tilde{X} \to X$ is a covering space
since we showed $A: S'-1(u_0)$ and $B: S'-1(-u_0)$
 $are evenly covered$
exercise: if (\tilde{X}, p) is a covering space
since we showed $A: S'-1(u_0)$ and $B: S'-1(-u_0)$
 $are evenly covered$
exercise: if (\tilde{X}, p) is a covering space of X and
 $(\tilde{Y}, p) = \dots Y$
then $(\tilde{X} \times \tilde{Y}, p_{X_p})$ is a covering space of $X \times Y$
so $p: \mathbb{R}^2 \to T^2: (x, y) \to ((\cos 2\pi x, \sin 2\pi x), (\cos 2\pi y, \sin 2\pi y))$
is a covering space of T^2
 \mathbb{R}^2
 $\mathfrak{P}_{n}: S' \to S': \mathfrak{H} \to \mathfrak{n} \mathfrak{R}$$





similarly another cover of X is



5) RP² = 5²/~ points in 5² ~ to antipode

similarly 5" -> Rp" a covering map

$$\frac{|emma 19:}{|et | [\tilde{x}_{i} \rho] be a covering space of a connected space X
the conductive $|\rho^{-1}(x)|$ is independent of $x \in X$

$$|\rho^{-1}(x)| is called the degree of the covering space
$$\frac{Proof:}{|et A = \{x \in X : |\rho^{-1}(x)| = k\}} \quad note: A \neq \emptyset \text{ since } x_{x} \in A$$

$$|f x \in A \text{ then let } U \text{ be a evenly covered ubbd of } x$$

$$so \quad p^{-1}(0) = \{U_{1}, \dots, U_{k}\}$$

$$\therefore |\rho^{-1}(x)| = k \quad \forall x' \in U$$

$$\therefore U \subset A \text{ and } A \text{ open}$$

$$similarly X - A \text{ open so } A \text{ closed}$$

$$\therefore X = A \text{ since } X \text{ contrivuous map}$$

$$f: Y \to X \text{ a contributions map}$$

$$f: Y \to X \text{ a contributions map}$$

$$f: Y \to X \text{ a covering space of } X$$

$$f = f(x_{0}) = x_{0} \text{ and } \tilde{x} \in X \text{ st. proof } f \text{ if } p \circ \tilde{f} = f$$

$$f = f(x_{0}) = x_{0} \text{ and } \tilde{x} \in X \text{ st. proof } \tilde{x}, \text{ then } \tilde{f} \text{ is a } \text{ lift } \text{ of } f \text{ if } p \circ \tilde{f} = f$$

$$f = f(x_{0}) = x_{0} \text{ and } \tilde{x} \in X \text{ st. proof } \tilde{x}, \text{ then } \tilde{f} \text{ is a } \text{ lift } \text{ and } \tilde{f}(x_{0}) = \tilde{x}, \text{ then } \tilde{f} \text{ is a } \text{ lift } \text{ of } f \text{ based at } \tilde{x} \text{ based } \text{ bouncetry}$$

$$\int \text{ if } H: Y \times So(1) \to X \text{ is a homotopy } \text{ with } h_{0}(y) = H(y_{0})$$

$$\text{ and } \tilde{h}_{0}: Y \to \tilde{X} \text{ a } \text{ both of } h_{0} \text{ the } \mathbb{H} \text{ and } \tilde{y} \text{ and } \tilde{y} \text{ a } \text{ both of } \text{ belowed } \text{ and } \text{ based } \text{ at } \tilde{x} \text{ based } \text{ at } \tilde{y} \text{ based } \text{ both } f(y_{0}) \text{ and } \tilde{h}_{0}: Y \to \tilde{X} \text{ a } \text{ both of } h_{0} \text{ the } \mathbb{H} \text{ beoded } \text{ and } \tilde{y} \text{ and } \tilde{y} \text{ and } \tilde{y} \text$$$$$$

<u>Proof</u>: same as proof of lemma 12 for a) and b) if Y= [0,1] for general case see T4=23 below (exercise)

subilarly
$$\widehat{H}[I_{1}t_{1}=\widehat{K}_{1}=\widehat{H}[S,1]$$

so $Y \sim e_{\overline{X}}$ by \widehat{H} and $\widehat{Y}Y]=\widehat{Y}=1$.
(2) clearly if $\widehat{Y}Y=p_{1}(\overline{X},\overline{X})$ and \overline{Y} lifts to a loop \overline{Y} based at \overline{K}_{1}
then $p_{1}(\overline{Y}Y)=\overline{Y}$
and if $\widehat{Y}Y=p_{1}(\overline{I},\overline{Y})$, then $\overline{Y}\sim p_{1}\overline{Y}$ is by beams 20, b)
the lift \widehat{Y} of Y based at \overline{K}_{1} is boundaries to \overline{Y}
(relead pts)
so \overline{Y} a loop.
(3) let $H=p_{1}(\overline{H}(\overline{X},\overline{K}))$ and $[S] \in H$, then note
if \overline{Y} a lift of \overline{Y} based at \overline{K}_{1}
 \widehat{GrY} " " \widehat{SrY} " " \widehat{K}_{0}
if \widehat{Y} a lift of \overline{Y} based at \overline{K}_{1}
if \widehat{Y} a lift of \overline{Y} based at \overline{K}_{1}
if $\widehat{Y} = p_{1}(\overline{K},\overline{K})$ and $[S] \in H$, then note
if $\widehat{Y} = 0$ map
 \widehat{Y} then $\widehat{Y}(1) = \widehat{S}\cdot \widehat{Y}(1)$ since \widehat{S} is a loop (and $\widehat{SrY}=\overline{S}\cdot \overline{Y})$
: we get σ map
 \widehat{Y} : fright cosets of $H_{1}^{2} \longrightarrow \overline{T}^{-1}(\overline{K})$
Hint is well-defined
if $\widehat{T}_{1} \in p^{-1}(\overline{K}_{1})$ than let \widehat{Y} be a path \overline{K}_{2} to \overline{X}_{1}
 $\widehat{X} = p_{2}\widehat{Y}$ is σ loop in \overline{X} based at \overline{X}_{0}
and ϕ (HIS) = $\widehat{Y}(1) = \widehat{X}_{1}$
so ϕ outo
now suppose $\phi(Hi_{1}\overline{X})= \phi(Hi_{1}\overline{Y})$
 $\widehat{S} \circ \widehat{T} \widehat{X}, \widehat{T} = p_{1}(1)$
 $\widehat{S} \circ \widehat{T} \widehat{X}, \widehat{T}$ is a loop if \widehat{X} and so $p_{1}([\overline{X},\overline{Y}]) \in H$
but $P_{1}([\overline{X},\overline{Y}])= [\overline{X}] + I_{1}\overline{Y}]^{-1} \to HI_{2}[-Hi_{1}]$
 Ie, ϕ is one-to-one

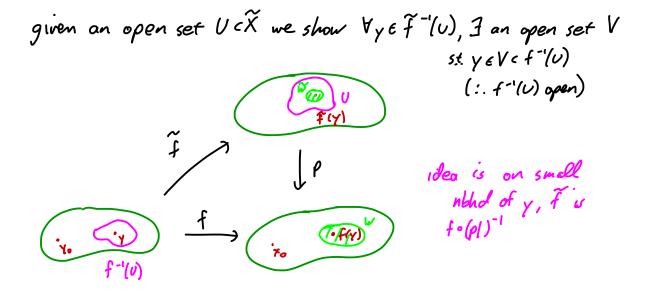
$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \left[\left(X, \rho \right) \text{ is a path connected covering space of X and x, \in X \\ \\ \end{array}{} & \left\{ P_{u} \left(T, \left(X, X \right) \right) \right\}_{X \in P^{-}(K_{u})} \\ \end{array}{} \text{ is a conjugacy class of subgroups of $T_{u}(X, x_{u}) \\ \end{array} \end{array}}$$

$$\begin{array}{l} \begin{array}{l} P_{oof} \left[b \in \mathbb{T}_{o}, \mathbb{X}, \in \rho^{-1}(K_{u}) & \text{ond set } H_{i} = \rho_{v} \left(T_{v} \left(\overline{X}, X_{u} \right) \right) \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{let } h: \left[o : 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to \widetilde{X}_{u} \\ \end{array} \\ \begin{array}{l} \text{let } h: \left[o : 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to \widetilde{X}_{u} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{let } h: \left[o : 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to \widetilde{X}_{u} \\ \end{array} \\ \begin{array}{l} \text{let } h: \left[o : 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to \widetilde{X}_{u} \\ \end{array} \\ \begin{array}{l} \text{let } h: \left[o : 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to \widetilde{X}_{u} \\ \end{array} \\ \begin{array}{l} \text{let } h: \left[o : 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to \widetilde{X}_{u} to \widetilde{X}_{u} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{let } h: \left[o : 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to \widetilde{X}_{u} to \widetilde{X}_{u} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{let } h: \left[o : 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to \widetilde{X}_{u} to \widetilde{X}_{u} to \widetilde{X}_{u} to \widetilde{X}_{u} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \text{let } h: \left[0 & 1 \right] \rightarrow \widetilde{X} & be a path \widetilde{X}_{u} to $\widetilde{$$

$$\chi_{0} \in Y \text{ st. } f(\gamma_{0}) = \chi_{0}$$

Then $\exists a \ lift \quad \widetilde{f} : Y \rightarrow \widetilde{\chi} \ (\rho \circ \widetilde{f} = f) \ \text{st. } \widetilde{f}(\gamma_{0}) = \widetilde{\chi}_{0}$
 \Leftrightarrow
 $f_{*} (\pi_{1}(Y,\gamma_{0})) \subseteq P_{*}(\pi_{1}(\widetilde{\chi},\widetilde{\chi}_{0}))$
(and if lift exists it is unique, see lemma 24 below)

Y is locally path connected if
$$\forall y \in Y$$
 and open sets U containing y, \exists an open
set $\forall st. y \in V \subset U$ and \forall is path connected
example: the comb space $C = \{i, j \mid x \in 0, i\} \cup (i \in i, i] \times [i])$ is
path connected but not locally path connected
Proof: (\Rightarrow) $f_{x}(T_{i}(Y, y_{0})) = p_{x}(\overline{x}(T_{i}(Y, y_{0})) \subseteq p_{x}(\overline{x}(\overline{x}, \overline{x}_{i})))$
 (\Leftarrow) for $y \in Y$ let Y be a path y_{0} to y
so for $y \in Y$ let Y be a path y_{0} to y
so for $y \in Y$ let Y be seed at \overline{x}_{0}
define: $\overline{Y}(y) = \overline{FaY}(1)$ note: it well-defined, then clearly poff = f and $\overline{f}(y_{0}) = \overline{y}_{0}$
 $(\underline{faim}: \overline{f} well-defined$
let $\overline{Y}, \overline{y}$ be two path y_{0} to y
 $Y = \overline{Y}$ is a loop in \overline{Y} based at y_{0}
so $f_{0}(I \subseteq Y = \overline{faY}) = f_{0}(\overline{T}(\overline{X}, \overline{x}))$
1.2 $(f \circ \overline{Y}) \times (\overline{f} \circ \overline{y})$ hits to a loop in \overline{X} based at \overline{x}_{0}
 but $(\overline{f} \circ T) = \overline{faY} + \overline{faY}$
 Iff based T for y
 $f = \overline{f} = \overline{faY} = \overline{faY} + \overline{faY}$
 Iff based T for y
 $f = \overline{faY} = \overline{faY}$ so $\overline{faY}(1) = \overline{faY}(1)$
 $at \overline{faY}(1) = \overline{faY}(1) = \overline{faY}(1)$
 $at \overline{faY}(1) = \overline{faY}(1) = \overline{faY}(1)$
 $and \overline{f}$ is well-defined!
 $f = \overline{faY} = \overline{faY}$ so $\overline{faY}(1) = \overline{faY}(1)$ and \overline{f} is well-defined!
 $f = \overline{faY} = \overline{faY}$ so $\overline{faY}(1) = \overline{faY}(1)$ and \overline{f} is well-defined!
 $f = \overline{faY} = \overline{faY}$ so $\overline{faY}(1) = \overline{faY}(1)$



let W be on evenly covered nbhd of
$$f(y)$$

and \widetilde{W} open set in \widetilde{X} s.t. $\widetilde{f}(y) \subset \widetilde{W} \subset U$
and $p|_{\widetilde{W}} : \widetilde{W} \to W$ homeomorphism (might need
and $p|_{\widetilde{W}} : \widetilde{W} \to W$ homeomorphism (might need
to shrink W)

Y locally path connected $\Rightarrow \exists V \text{ open in } Y \notin V \in f^{-}(w)$ and V path connected

now fix a path 8 from
$$y_0$$
 to y
for any $y' \in V$ let \mathcal{P} be a path y to y' in V
so $\mathcal{S} * \mathcal{P}$ is a path y_0 to y'
 $\therefore \tilde{f}(y') = \tilde{f}_0(\tilde{s} * \mathcal{P})(i)$
but if for is lift of for based at $\tilde{f}_0 \tilde{s}(i) = \tilde{f}(y)$
then $\tilde{f}_0(\tilde{s} * \mathcal{P})(i) = \tilde{f}_0 \mathcal{P}(i)$
and we know $\tilde{f}_0 \mathcal{P} = (\mathcal{P}|_{\widetilde{w}})^{-1} \tilde{f}_0 \mathcal{P}$
 $\therefore \tilde{f}(y') \in \tilde{w} \in U$
 $1\mathcal{R}, V \subset \tilde{f}^{-1}(U)$

lemma 24: (\tilde{X}, ρ) a covering space of X let $\tilde{f}_i, \tilde{f}_2: Y \rightarrow \tilde{X}$ be two lifts of $f: Y \rightarrow X$ if Y is connected and \tilde{f}_i and \tilde{f}_2 agree at one point then $\tilde{f}_i = \tilde{f}_2$

Proof:

$$let A = \{y \in Y \text{ s.t. } \tilde{f}_{i}(y) = \tilde{f}_{i}(y)\}$$

$$A \neq \emptyset \text{ by assuption}$$

$$if y \in A \text{ then let } U \text{ be an evenly covered nbbd of } f(y)$$

$$let \widetilde{U} \text{ be an open set in } \widetilde{X} \text{ st. } \tilde{f}_{i}(y) = \tilde{f}_{i}(y) \in \widetilde{U}$$
and $p|_{U}: \widetilde{U} \rightarrow U$ is a homeomorphism
since f is contribuous \exists open $nbbd V \text{ of } y \text{ st. } f(v) = U$

$$now \tilde{f}_{i}|_{v} = [p|_{U}]^{-i}of|_{v} = \tilde{f}_{i}|_{v}$$

$$\therefore V \in A \text{ and } A \text{ open}$$

$$if y \notin A, \text{ then with } U \text{ as above, } \exists \widetilde{U}, \widetilde{U}_{v} \text{ open in } \widetilde{X} \text{ st.}$$

$$\tilde{f}_{i}(y) \in \widetilde{U}_{i} \text{ ond } p|_{\widetilde{U}_{i}}: \widetilde{V}_{i} \rightarrow U \text{ a homeomorphism}$$

$$clearly \ \widetilde{U}_{i} \cap \widetilde{U}_{i}^{2} = \emptyset$$

$$\therefore \text{ if } V \text{ is as above, then } \tilde{f}_{i}(U) \in \widetilde{U}_{i}$$

$$so \ X - A \text{ open}$$

$$\therefore \text{ by connectedness of } X, A = X$$

$$Two \ coverving \text{ spaces } (\widetilde{X}_{i}, \rho_{i}), t = u, \text{ of } X \text{ are isomorphic if } \exists a$$

$$homeomorphism \ h: \widetilde{X}_{i} \rightarrow \widetilde{X}_{i} \text{ st. } p_{i}\circ h = P, \qquad \widetilde{X}_{i} \xrightarrow{h} \rightarrow \widetilde{X}_{v}$$

$$note: \text{ this is an equivalence relation}$$

Suppose
$$(\tilde{X}_{i}, \rho_{1}), i=1,2, are path connected, locally path connectedcovering spaces of X, $x_{o} \in X, \ \tilde{x}_{i} \in \rho_{i}^{-1}(x_{o})$
a) $if(\rho_{i})_{*}(\pi_{i}(\tilde{X}, \tilde{x}_{i})) \in (\rho_{2})_{*}(\pi_{i}(\tilde{X}_{2}, \tilde{x}_{3}))$
then ρ_{i} lifts to a covering space $p: \tilde{X}_{i} \rightarrow \tilde{X}_{2}$ taking x_{i} to x_{2} .
b) $(\tilde{X}_{i}, \tilde{x}_{i})$ and $(\tilde{X}_{v_{1}} \tilde{x}_{2})$ are isomorphic covering spaces of X
by an isomorphism taking \tilde{x}_{i} to \tilde{x}_{i}
 $(\rho_{i})_{*}(\pi_{i}(\tilde{X}, \tilde{x}_{i})) = (\rho_{2})_{*}(\pi_{i}(\tilde{X}_{2}, \tilde{x}_{3}))$$$

c)
$$(\widetilde{X}_{1,p_{1}})$$
 and $(\widetilde{X}_{2,p_{2}})$ are isomorphic covering spaces of X
 \Rightarrow
 $(\rho_{1})_{*}(\pi_{1}(\widetilde{X},\mathfrak{r}_{1}))$ is conjugate to $(\rho_{2})_{*}(\pi_{1}(\widetilde{X}_{2},\mathfrak{r}_{2}))$

Proof: a) by Th = 23 we get a lift
$$p: \tilde{X}_{1} \rightarrow \tilde{X}_{2}$$
 taking \tilde{x}_{1} to \tilde{x}_{1}
we now show $p \neq covering$ map
 $p_{1} \int_{0}^{\infty} \tilde{X}_{2}$ re \tilde{X}_{2} let U be a non-bod of $p_{1}(x)$ in X that is
evenly covered by p_{1} and p_{2}
so $\exists a unique \tilde{U}$ in \tilde{X}_{2} st. $x \in \tilde{U}$ and
 $p_{2}|_{\tilde{U}}: \tilde{U} \rightarrow U$ is a homeomorphism
let $p^{-1}(\tilde{U}) = \bigcup_{n} \tilde{U}_{n}$, clearly $\bigcup_{n} \tilde{Z}_{n} \subset \tilde{p}_{1}^{-1}(U)$ so $p_{1}|_{\tilde{U}_{n}}: \tilde{U}_{n} \rightarrow U$ a homeo.
so $p|_{U_{n}} = p_{2}^{-1}|_{U_{n}} \circ p_{1}|_{U_{n}}$ is a homeomorphism $\widetilde{U}_{n} \rightarrow \tilde{U}$
 \therefore each point in p has an evenly covered n bhd.
b) (\Rightarrow) clear
(\Leftarrow) let $\tilde{p}_{1}: \tilde{X}_{1} \rightarrow \tilde{X}_{2}$ be left of p_{1} $\tilde{X}_{2} \stackrel{\tilde{H}}{\rightarrow} \tilde{X}_{1} \stackrel{\tilde{H}}{\rightarrow} \tilde{X}_{2}$
 $\tilde{p}_{2}: \tilde{X}_{2} \rightarrow \tilde{X}_{1}$ be left of p_{1} $\tilde{X}_{2} \stackrel{\tilde{H}}{\rightarrow} \tilde{X}_{1} \stackrel{\tilde{H}}{\rightarrow} \tilde{X}_{2}$

note:
$$\tilde{\rho}_1 \circ \tilde{\rho}_2 \colon \tilde{X}_2 \to \tilde{X}_2$$
 takes \tilde{X}_2 to \tilde{X}_2 and is a lift of p_2 to \tilde{X}_2
 $\tilde{\rho}_1 \circ \tilde{\rho}_2 \colon \tilde{X}_2 \to \tilde{X}_2$
 $\tilde{\chi}_1 \to \tilde{\chi}_2$
but so is $id_{\tilde{X}_1} \colon \tilde{X}_2 \to \tilde{X}_2 \to by$ lemma 24, $\tilde{\rho}_1 \circ \tilde{\rho}_2 = id_{\tilde{X}_2}$

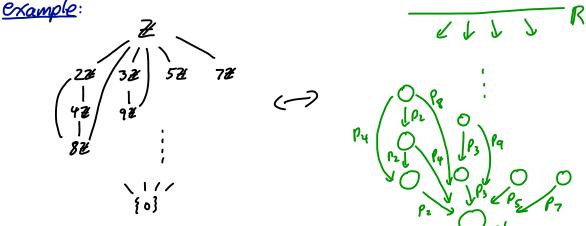
similarly $\tilde{p}_{i} \circ \tilde{p}_{i} = id \tilde{x}_{i}$ $\therefore \tilde{p}_{i}$ and \tilde{p}_{i} are homeomorphisms. c) clear from lemma 22 and b)

A space X is semilarally simply connected if each point
$$x \in X$$

has a neighborhood U st. $\pi_{i}(U, x) \rightarrow \pi(X, z)$ is trivial
induced by industant
 $X = \bigcup_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{i=1}^{N} \sum_{i=1}^{(L,n)} \sum_{i=1}^{nd(X,n)} \frac{nd(X,n)}{(X,N)} \frac{nd(X,n)}{(X,N)}$
is not semilarally simply connected
but (W-complexes and manifolds are
 $I = \sum_{i=1}^{N} \sum_{i=1}^{(L,n)} \sum_{i=1}^{(L,n)} \frac{nd(X,n)}{(X,N)} \frac{nd(X,n)}{(X,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \xrightarrow{(X,N,N)} \frac{(X,N,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \frac{(X,N,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \frac{(X,N,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \frac{(X,N,N,N)}{(X,N,N)} \frac{(X,N,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \frac{(X,N,N,N)}{(X,N,N)} \frac{(X,N,N,N)}{(X,N,N)} \frac{(X,N,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X,N,N)} \frac{(X,N,N)}{(X$

later

The unique simply connected cover of X is called the universal car



<u>Proof</u>: note 1) an

note 1) and 2) follow from Cor 25 once we have the one-to-one corresp. 3) follows from lemma 21

also, once we have a well-defined map $H < \pi_i(X, x_b) \mapsto (X_{\mu, \rho_{\mu}, \tilde{x}_{\mu}})$ such that $\rho_*(\pi_i(\tilde{X}_{\mu}, \tilde{x}_{\mu})) = H$

so we are left to construct
$$(X_{H_{i}}, p_{H_{i}}, \tilde{x}_{H})$$
 given $H < \pi_{i}(X, x_{i})$

to this end we call two paths $\mathcal{X}, \eta : [0, 1] \rightarrow X$ based at x_0, \underline{H} -equivalent

exercise: 1) This is an equivalence relation

2) if H= {e} then this is just homotopy relend points

Set
$$\widetilde{X}_{\mu} = \{\langle X \rangle \mid X \text{ a poth in } X \text{ based at } x_{o} \}$$

(this is just a set, but we put a topology on it later)
 $p_{H} \colon \widetilde{X}_{\mu} \to X \colon \langle X \rangle \longmapsto \chi(i)$
 $\widetilde{\chi}_{\mu} = \langle e_{\chi} \rangle$

<u>note</u>: p_{H} is onto since any point $x \in X$ is connected to x_{0} by a path We want to define a topology on \widetilde{X}_{H} , but first we need to undestand something about the topology on X

Claud:
$$\mathcal{U} = \{ \forall c X : \cup qpen, porth-connected and $\pi_i(u_N) \rightarrow \pi_i(x_n) \operatorname{trivial}, \operatorname{some} x \in U \}$
is a basis for the topology on X
(recall, a collection of open sets in X is a basis
for the topology on X if $\forall x \in X$ and open set U with $x \in U$
 $\exists an open set 0$ in the collection st $x \in O \subset U$.
 $i.e. any open set is a union of sets in the collection)$
 \mathfrak{P} : note: if $\pi_i(U,x) \rightarrow \pi_i(X,x)$ trivial
 $\forall hen \pi_i(U,x) \rightarrow \pi_i(X,x)$ trivial
 $\forall hen \pi_i(U,y) \rightarrow \pi_i(X,x)$ trivial
 $\forall y \in U$ since
 $\pi_i(U,y) \rightarrow \pi_i(X,y)$
 $also, if $U \in U$ and $V \in U$ is open and path connected
 $\forall hen \pi_i(V,x) \rightarrow \pi_i(V,x) \rightarrow \pi_i(X,x)$
 $trivial
 $: V \in U$
now X semilocally simply connected says for any $x \in X$
and open set U containing x , $\exists open set V$ st.
 $x \in V$ and $\pi_i(V,x) \rightarrow \pi_i(X,x)$ trivial
so $(U \cap V open set containing x and$
 $\pi_i(UnV,n) \rightarrow \pi_i(X,x)$ trivial
X locally path connected $\exists \exists open W \text{ st. } \pi \in W \subset U \wedge V$ and
 W is path connected
from above $\pi_i(W,x) \rightarrow \pi_i(X,x)$ trivial
so $W \in U$ and U is a basis for topology on X.
for each $U \in U$ and X a path in U st. $\eta(o) = \delta(i)$
note $U_g \subset X_H$$$$$

Now if
$$(5) \in U_{11} \wedge V_{21}$$
, then $V_{11} = V_{12}$ and $V_{11} = V_{22}$
so if $W \in U$ s.t. $W \in U \wedge V$ and $S(1) \in W$
then $W_{45} \in U_{45} \cap V_{45} = U_{47} \cap V_{51}$
clearly \tilde{X}_{H} is a union of all U_{47} 's
so we have a basis for a topology on \tilde{X}_{H} .
Claum: with above topology (\tilde{X}_{H}, p_{H}) is a covering space of X
Pf: note: $\forall U \in U$, $\forall paths x_{0}$ to pt in U
 $R_{H_{12}}^{-1}: U_{47} \rightarrow U$ a homeomorphism
indeed, p_{H} is a bijection by 2) and 3)
Philows
 $(P_{H_{12}})^{-1}(V) = V_{45}$ is open set $V \in U$
and any path δ from x_{0} to pt in V
 $\left(p_{H_{12}}\right)^{-1}(V) = V_{457}$ is open
the above argument also shows that basis open sets in
 U_{475} map to basis open sets in U
 $\therefore P_{H_{1455}}$ a homeomorphism
note this implies P is continuous
now if $x \in X$, then let $U \in U$ be a set containing X
 $p^{-1}(U) = U_{10}$ in of $U_{475} \rightarrow V$ homeomorphism.
Claum: $(P_{41}, V_{475}) \rightarrow H$
Pf: $(F \mid X_{1} \in H, then let $Y_{4}(5)$ be the path
 $T_{6}: [O_{1}(1 \rightarrow X_{55}) = V_{55}$
 $note: $\Im: [O_{1}(1 \rightarrow X_{55}) = V_{55}$
 $note: $\Im: [O_{1}(1 \rightarrow X_{55}) = V_{55}$
 $note: \Im: [O_{1}(1 \rightarrow X_{55}) = V_{55}$
 $note: [X_{1}] \in H$$$$

Moreover
$$p_{H^{\circ}}\delta = \delta$$

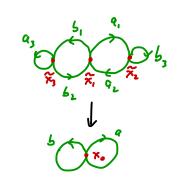
 $\therefore [x] \in image(p_{H})_{*}$
now if $[x] \notin H$, then the path
 $\delta : [\circ, i] \rightarrow \tilde{X}_{H}$
 $t \mapsto \langle x_{t} \rangle$
is clearly the lift of δ based at \tilde{X}_{H}
and $\delta (i) = \langle \delta \rangle$
but $\langle \delta \rangle \neq \langle e_{x_{\circ}} \rangle = \tilde{X}_{H}$ since $[x] \notin H$
 $\therefore [x] \notin image(p_{H})_{*}$ by lemma 21, 2)

let
$$p: \tilde{X} \to X$$
 be a covering space
a deck transformation or covering transformation is a covering space
isomorphism $f: \tilde{X} \to \tilde{X}$
the set $(J(\tilde{X}))$ of deck transformations clearly is a error under

the operation of composition

examples: 1) $s' \qquad \tilde{x}_{i}$ $p_{n} \downarrow \tilde{x}_{i}$ $p_{n} \downarrow \tilde{x}_{i}$ $s' \qquad \tilde{x}_{o}$ $s' \qquad \tilde{x}_{o}$ $f = f \text{ is any deck transformation then } f(\tilde{x}_{i}) = \tilde{x}_{i}$ for some i, but $\phi_{i}(\tilde{x}_{i}) = \tilde{x}_{i}$ too so by lemma 24, $f = \phi_{i}$ (since covering transforms are $so \quad G(\tilde{x}) = \mathbb{Z}_{n\mathbb{Z}}$

2)



If we left b to
$$\tilde{x}_3$$
 then it is a loop but
if we left to \tilde{x}_2 or \tilde{x}_1 it is a path
so no dech trans. taking \tilde{x}_3 to \tilde{x}_1 or \tilde{x}_2
similarly can't send \tilde{x}_2 to \tilde{x}_1 or \tilde{x}_3

So any dech trans fixes all
$$\tilde{x}_i$$
 : is identity
:: $G(\tilde{x}) = \{1\}$

A covering space $p: \tilde{X} \to X$ is called <u>normal</u> if $\forall x \in X$ and $\tilde{x}, \tilde{x}' \in p^{-1}(x)$ $\exists \phi \in G(\tilde{X}) \quad s.t. \quad \phi(\tilde{x}) = \tilde{X}'$

so example 1) is normal but example 2) is not.

$$Th \stackrel{m}{\rightarrow} 27:$$

$$let \ p:(\tilde{X}, \tilde{\kappa}) \rightarrow (X, \kappa_{o}) \ be \ a \ path \ connected, \ locally \ path \ connected \ covering \ space \ of \ a \ space \ X$$

$$let \ H = \rho_{*} \left(T_{i} \left(\tilde{X}, \tilde{\kappa}_{o} \right) \right) < T_{i}(X, \kappa_{o}), \ then$$

$$i) \left(\tilde{X}, \rho \right) \ is \ normal \ \Leftrightarrow H \ is \ a \ normal \ subgroup \ of \ T_{i}(X, \kappa_{o})$$

$$z) \ G(\tilde{X}) \cong \frac{N(H)}{H} \qquad where \ N(H) \ is \ the \ "normalizer" \ of \ H, i.e. \ largest \ subgroup \ of \ T_{i}(X, \kappa_{o}) \ containing \ H \ as \ a \ normal \ subgroup$$

Remark: If
$$p: \tilde{X} \to X$$
 normal, then $G(\tilde{X}) = \pi_i(X, \kappa_i)$
in particular, for the universal cover $p: \tilde{X} \to X$
 $G(\tilde{X}) = \pi_i(X, \kappa_i)$

let h be a path in
$$\tilde{X}$$
 from $\tilde{\chi}$ to $\tilde{\chi}$, and $\tilde{\chi} = poh$
by lemma 22, $[Y]H_{i}[X]^{-1}=H$
 $\therefore H=H_{i}$ since H is normal
 $if p_{i}(\overline{\tau}(\tilde{X}, \overline{\chi}_{i})) = p_{i}(\overline{\tau}(\tilde{X}, \overline{\chi}_{i}))$
 \therefore by $Th^{2}23 \exists lifts of p to p, and p_{i}$
 $(\tilde{X}, \tilde{\chi}_{i}) \xrightarrow{\Phi} (\tilde{X}, \tilde{\chi}_{i}) \xrightarrow{\Phi} (\tilde{X}, \tilde{\chi}_{i})$
 $p \rightarrow \int p^{o} \cdot p^{e} (\tilde{X}, \tilde{\chi}_{i})$
 $p \rightarrow \int p^{o} (\tilde{\chi}, \tilde{\chi}_{i})$
 $p \rightarrow (\tilde{\chi}, \tilde{\chi}$

and from above [8] H[8] - = H so [8] = N(H) and $\overline{\Phi}([x]) = \phi$ <u>Claim:</u> ker $\Phi = H$ if [Y] & H, then & (1)= x so \$ ([x]) = idx : Hcker F if [r] & ker \$, then \$(1)= % and so \$ a loop :[Y] E H a group action on a topological space X is a pair (G, p) where G is a group, and p: G -> Homeo (X) is a homomorphism "group of homeomorphisms if Gacts on X then we can form the quotient space X/G where two points x, x, are identified if Ige (st. p(g) (x) = x2 this is called the orbit space Th=28: _ let 6 be a group action on X such that * $\forall x \in X, \exists a \text{ nbhd } U \text{ of } x \text{ so that } g_1 \cup ng_2 \cup \neq \emptyset \Rightarrow g_1 = g_2$ then i) p: X -> X/G is a normal covering space 2) $G \equiv G(X \rightarrow \frac{1}{6})$ if X is path connected 3) $G \cong \pi_{I}(X/G) / \rho_{I}(\pi_{I}(X))$ if X is path connected and locally path connected.

<u>Proof</u>: fairly easy <u>exercise</u> or see Hatcher

<u>exercise</u>: if G is finite and G acts <u>freely</u> on X (ne. has no fixed points) then the action on X satisfies *

